25 research outputs found

    The 3-d Random Field Ising Model at zero temperature

    Full text link
    We study numerically the zero temperature Random Field Ising Model on cubic lattices of various linear sizes LL in three dimensions. For each random field configuration we vary the ferromagnetic coupling strength JJ. We find that in the infinite volume limit the magnetization is discontinuous in JJ. The energy and its first JJ derivative are continuous. The approch to the thermodynamic limit is slow, behaving like LpL^{-p} with p.8p \sim .8 for the gaussian distribution of the random field. We also study the bimodal distribution hi=±hh_{i} = \pm h, and we find similar results for the magnetization but with a different value of the exponent p.6p \sim .6 . This raises the question of the validity of universality for the random field problem.Comment: 8 pages, 3 PostScript Figure

    Disorder driven phase transitions of the large q-state Potts model in 3d

    Full text link
    Phase transitions induced by varying the strength of disorder in the large-q state Potts model in 3d are studied by analytical and numerical methods. By switching on the disorder the transition stays of first order, but different thermodynamical quantities display essential singularities. Only for strong enough disorder the transition will be soften into a second-order one, in which case the ordered phase becomes non-homogeneous at large scales, while the non-correlated sites percolate the sample. In the critical regime the critical exponents are found universal: \beta/\nu=0.60(2) and \nu=0.73(1).Comment: 4 pages; 3 figure

    Spectral Properties of Statistical Mechanics Models

    Full text link
    The full spectrum of transfer matrices of the general eight-vertex model on a square lattice is obtained by numerical diagonalization. The eigenvalue spacing distribution and the spectral rigidity are analyzed. In non-integrable regimes we have found eigenvalue repulsion as for the Gaussian orthogonal ensemble in random matrix theory. By contrast, in integrable regimes we have found eigenvalue independence leading to a Poissonian behavior, and, for some points, level clustering. These first examples from classical statistical mechanics suggest that the conjecture of integrability successfully applied to quantum spin systems also holds for classical systems.Comment: 4 pages, 1 Revtex file and 4 postscript figures tarred, gzipped and uuencode

    On the complexity of some birational transformations

    Get PDF
    Using three different approaches, we analyze the complexity of various birational maps constructed from simple operations (inversions) on square matrices of arbitrary size. The first approach consists in the study of the images of lines, and relies mainly on univariate polynomial algebra, the second approach is a singularity analysis, and the third method is more numerical, using integer arithmetics. Each method has its own domain of application, but they give corroborating results, and lead us to a conjecture on the complexity of a class of maps constructed from matrix inversions

    Symmetry, complexity and multicritical point of the two-dimensional spin glass

    Full text link
    We analyze models of spin glasses on the two-dimensional square lattice by exploiting symmetry arguments. The replicated partition functions of the Ising and related spin glasses are shown to have many remarkable symmetry properties as functions of the edge Boltzmann factors. It is shown that the applications of homogeneous and Hadamard inverses to the edge Boltzmann matrix indicate reduced complexities when the elements of the matrix satisfy certain conditions, suggesting that the system has special simplicities under such conditions. Using these duality and symmetry arguments we present a conjecture on the exact location of the multicritical point in the phase diagram.Comment: 32 pages, 6 figures; a few typos corrected. To be published in J. Phys.

    A classification of four-state spin edge Potts models

    Full text link
    We classify four-state spin models with interactions along the edges according to their behavior under a specific group of symmetry transformations. This analysis uses the measure of complexity of the action of the symmetries, in the spirit of the study of discrete dynamical systems on the space of parameters of the models, and aims at uncovering solvable ones. We find that the action of these symmetries has low complexity (polynomial growth, zero entropy). We obtain natural parametrizations of various models, among which an unexpected elliptic parametrization of the four-state chiral Potts model, which we use to localize possible integrability conditions associated with high genus curves.Comment: 5 figure

    Post-critical set and non existence of preserved meromorphic two-forms

    Full text link
    We present a family of birational transformations in CP2 CP_2 depending on two, or three, parameters which does not, generically, preserve meromorphic two-forms. With the introduction of the orbit of the critical set (vanishing condition of the Jacobian), also called ``post-critical set'', we get some new structures, some "non-analytic" two-form which reduce to meromorphic two-forms for particular subvarieties in the parameter space. On these subvarieties, the iterates of the critical set have a polynomial growth in the \emph{degrees of the parameters}, while one has an exponential growth out of these subspaces. The analysis of our birational transformation in CP2 CP_2 is first carried out using Diller-Favre criterion in order to find the complexity reduction of the mapping. The integrable cases are found. The identification between the complexity growth and the topological entropy is, one more time, verified. We perform plots of the post-critical set, as well as calculations of Lyapunov exponents for many orbits, confirming that generically no meromorphic two-form can be preserved for this mapping. These birational transformations in CP2 CP_2, which, generically, do not preserve any meromorphic two-form, are extremely similar to other birational transformations we previously studied, which do preserve meromorphic two-forms. We note that these two sets of birational transformations exhibit totally similar results as far as topological complexity is concerned, but drastically different results as far as a more ``probabilistic'' approach of dynamical systems is concerned (Lyapunov exponents). With these examples we see that the existence of a preserved meromorphic two-form explains most of the (numerical) discrepancy between the topological and probabilistic approach of dynamical systems.Comment: 34 pages, 7 figure

    Minimum spanning trees on random networks

    Full text link
    We show that the geometry of minimum spanning trees (MST) on random graphs is universal. Due to this geometric universality, we are able to characterise the energy of MST using a scaling distribution (P(ϵ)P(\epsilon)) found using uniform disorder. We show that the MST energy for other disorder distributions is simply related to P(ϵ)P(\epsilon). We discuss the relationship to invasion percolation (IP), to the directed polymer in a random media (DPRM) and the implications for the broader issue of universality in disordered systems.Comment: 4 pages, 3 figure

    Level Statistics of XXZ Spin Chains with Discrete Symmetries: Analysis through Finite-size Effects

    Full text link
    Level statistics is discussed for XXZ spin chains with discrete symmetries for some values of the next-nearest-neighbor (NNN) coupling parameter. We show how the level statistics of the finite-size systems depends on the NNN coupling and the XXZ anisotropy, which should reflect competition among quantum chaos, integrability and finite-size effects. Here discrete symmetries play a central role in our analysis. Evaluating the level-spacing distribution, the spectral rigidity and the number variance, we confirm the correspondence between non-integrability and Wigner behavior in the spectrum. We also show that non-Wigner behavior appears due to mixed symmetries and finite-size effects in some nonintegrable cases.Comment: 19 pages, 6 figure

    Random Matrix Theory and higher genus integrability: the quantum chiral Potts model

    Full text link
    We perform a Random Matrix Theory (RMT) analysis of the quantum four-state chiral Potts chain for different sizes of the chain up to size L=8. Our analysis gives clear evidence of a Gaussian Orthogonal Ensemble statistics, suggesting the existence of a generalized time-reversal invariance. Furthermore a change from the (generic) GOE distribution to a Poisson distribution occurs when the integrability conditions are met. The chiral Potts model is known to correspond to a (star-triangle) integrability associated with curves of genus higher than zero or one. Therefore, the RMT analysis can also be seen as a detector of ``higher genus integrability''.Comment: 23 pages and 10 figure
    corecore